

Technical Datasheet

MUS-01

Miro Flow Sensor Module

The MUS-01 module is a flow sensing module based on ultrasonic flow sensing technology which mainly targets at the home appliance market, to replace current, traditional Hall sensor flow solutions.

Key Features & Benefits

- Long-time reliability
 - Solve the pain point, no movable parts, no risk of getting stuck
- High accuracy
 - Up to 5% accuracy at wide range(can be even better with customization)
- Wide sensing range
 - \circ 0 to 2000 l/h $\,$
- Low power
 - Less than 5 mA with single 5 V power supply
- Standard interface
 - UART, 1-wire communication supported and industrial standard mechanical interface
- Cost effective
 - Simplified system design and automatic production to optimize the overall cost
- Food grade material
 - Can be used for drinking water directly

Applications

- Boilers
- Water purifiers
- Coffee Machines
- Micro Flow

Table of Contents

Key	Features & Benefits 2
Арр	lications 2
Tab	le of Contents3
1	Block diagram 4
2	Absolute maximum ratings 4
3	Electrical characteristics5
4	Sensor characteristics 5
5	Interface Description6
6	Mechanical Outline7
7 7.1 7.2	Application Information7UART71-wire Connection8
8 8.1 8.2 8.3 8.4	UART Protocol8Host Protocol8Command Definition9Answer9Data Output Format10
 9.1 9.1. 9.1. 9.2 9.3 9.4 9.5 	2Master Write Operation133Master Read operation141-wire Command151-wire registers15CRC-8 calculation16Example of 1-wire read/write16
10	Ordering information 16

1 Block diagram

The internal block diagram of MUS-01 is shown in Figure 1.

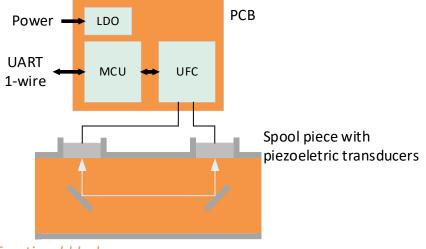


Figure 1: Functional blocks

2 Absolute maximum ratings

Stresses beyond those listed in this section may cause permanent damage to the device. These are - each at a time - stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under <u>Electrical characteristics</u> is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 1: MUS-01 absolute maximum ratings

Symbol	Parameter	Min	Max	Units	Comments						
Electrical Parameters											
V_{DD}	Supply voltage	-0.30	6.0	V							
V _{IO}	IO voltage level	-0.30	5.5	V	UART_RX, UART_TX, 1- Wire						
	Electrostatic Discharge										
ESDHBM	Human body model;all pins	±4	000	V	JEDEC JS-001-2014						
		Water Pres	sure								
p _{Watr}	Maximum water pressure	4	.0	MPa							
	Operating and Storage Conditions										
T _{STRG}	Storage temperature	-25	100	°C							
T _A	Operating ambient temperature	-25	85	°C							

T _{Water}	Operating water temperature	0	60	°C	Not frozen
H _A	Operating ambient relative humidity	0	100	%RH	
p _{Water}	Operating water pressure		1.75	MPa	

3 Electrical characteristics

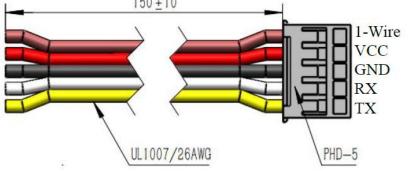
All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

All values refer to $T_A = 25$ °C and at 1.80 V supply voltage, unless otherwise specified.

Table 2: Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Supply voltage		4.5	5.0	5.5	V
I _{DD}	Supply current	Average working power consumption		2		mA
VIH	High-level input voltage		$0.7 \times V_{DD}$		V _{DD} +0.3	V
VIL	Low-level input voltage		-0.5		0.7	V

4 Sensor characteristics


Table 3: Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{range}	Flow sensing range		0		2000	l/h
F _{acc}	Flow sensing accuracy	10 to 60 l/h			10	%
		60 to 2000 l/h		3	5	
T _{range}	Water temperature measurement range		1		60	°C
T _{acc}	Water temperature measurement accuracy			±1		°C

5 Interface Description

Table 4: Electrical characteristics

Pin Number	Pin Name	Description
1	1-Wire	1-Wire output
2	VCC	Power supply
3	GND	Ground
4	UART_RX	UART RX input
5	UART_TX	UART TX output
		150 <u>+</u> 10

6 Mechanical Outline

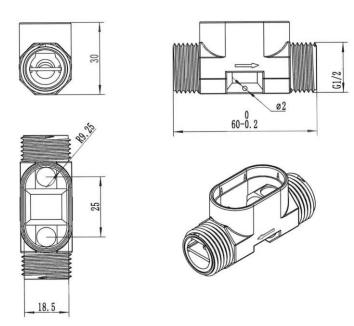


Figure 2: mechanical drawings

7 Application Information

7.1 UART

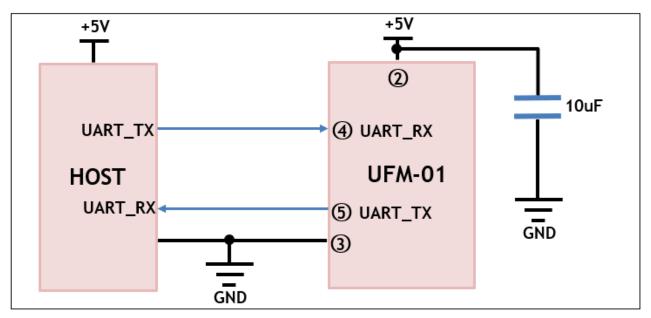
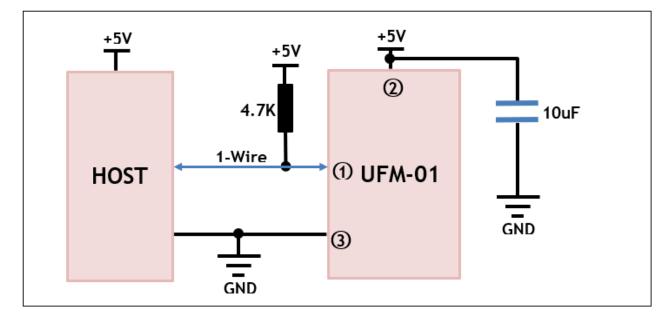



Figure 3: MUS-01 typical Application with UART connection

7.2 1-wire Connection

Figure 4: MUS-01 typical Application with 1-wire connection

8 UART Protocol

The UART protocol is based on

- Baude rate: 2400 bit/s
- Data bits: 8
- Parity: Even
- Stop bit: 1

8.1 Host Protocol

Table 5: Host protocol

Prefix	Prefix	Start Byte	Command	Command	Checksum	Stop Byte
Byte 1	Byte 2	1	Byte	para Byte	Byte	
0xFE	0xFE	0x11	CMD	DATA	CS	0x16

CS =(Command Byte +Command para byte n) & 0xFF

8.2 Command Definition

Table 6: Command definition

CMD	DATA1	Note
0x5A	0xFD	Clear accumulated flow
0x5C	00H- active 01H- passive	Change passive/active mode: Passive mode: device only send data when the host send a read command, data format according to the Table 22 and Table 23. Active mode: device send data automatically every second, data format according to the Table 21. Default: Active mode
0x5B	0xCB 0x0F	Read sensor data: 0xCB: Read all data including ID. 0x0F: Read data without ID. Data format defined in Table 22 and Table 23.
0x5D	0xCB	Reset the device

8.3 Answer

- a) Clear accumulated flow Host 0xFE 0xFE 0x11 0x5A 0xFD 0x57 0x16 Device 0xE5
- b) Change passive/active mode Change passive mode: Host 0xFE 0xFE 0x11 0x5C 0x01 0x5D 0x16 Device 0xE5

Change active mode: Host 0xFE 0xFE 0x11 0x5C 0x00 0x5C 0x16 Device 0xE5

- c) Read sensor data(WithOut ID): Host 0xFE 0xFE 0x11 0x5B 0x0F 0x6A 0x16 Device Data out defined in 4. Data output format
- d) Read sensor data(With ID): Host 0xFE 0xFE 0x11 0x5B 0xCB 0x26 0x16 Device Data out defined in 4. Data output format

e) Reset the module: Host 0xFE 0xFE 0x11 0x5D 0xFD 0x5A 0x16 Device 0xE5

8.4 Data Output Format

Table 7: Data output(Active Mode)

0	1	2	3	4	5	6	7		
Start Byte1	Start Byte2		Device ID, fox example 2307140001 Data: 230714 SerialNum:0001						
0x3C	0x32	0x01	0x00	0x14	0x07	0x23	0x01		

8	9	10	11	12	13	14	15
Acc Flow Flag	If Flag is 0x0 If Flag is 0x1	,					Instant Flow Flag
0x0A 0x1A	0x89	0x67	0x45	0x23	0x10	0x33	0x0B

16	17	18	19	20	21	22	23
	ow is -23456),Negative V	,		Reserved			
DI120.0X00	,negative v	alue					
0x89	0x67	0x45	0x23	0x80	0x0C		

24	25	26	27	28	29	30	31
Temp Flag	Measured water temperature in degree, for example 56.34 °C			ST1	ST2	Checksum	Stop Byte
0x0D	0x34	0x56 (0x00			CS =(Byte 0 + Byte 1 + +ST2) & 0xFF	0x16

0	1	2	3	4	5	6	7
Start Byte1	Start Byte2	· · ·	Device ID, fox example 2307140001 Data: 230714 SerialNum:0001				Reserved
0x3C	0x96	0x01	0x00	0x14	0x07	0x23	

Table 8: Data output(Passive Mode, Data report when read all data including ID)

8	9	10	11	12	13	14	15
Acc Flow Flag	-	,		331023456.7 331023456.7			Reserved
0x0A/0x1A	0x89	0x67	0x45	0x23	0x10	0x33	

16	17	18	19	20	21	22	23
	Reserved						
						0x0B	0x89

24	25	26	27	28	29	30	31
-234567.89 l/h,LSB:0.01l/h Bit20:0x80,Nagetive Value					Reserved		Temp Flag
0x67	0x45	0x23	0x80				0x0D

32	33	34	35	36	37	38
Measured water temperature in degree, for example 56.34 °C			ST1	ST2	Checksum	Stop Byte
0x34	0x56	0x00			CS =(Byte 0 + Byte 1 + + ST2) & 0xFF	0x16

Table 9: Data output(Pass	ive Mode, Data repor	t when read data without ID)

0	1	2	3	4	5	6	7
Start Byte1	Start Byte2	Acc Flow Flag	If Flag is 0x0A, the Acc Flow is 331023456.789l LSB:0.001L				l
			If Flag is 0 LSB:0.001n		: Flow is 331	023456.789	m3
0x3C	0x64	0x0A/0x1A	0x89	0x67	0x45	0x23	0x10

8	9	10	11	12	13	14	15
	Instant Flow Flag) l/h, LSB:0. agetive Valu				Temp Flag
0x33	0x0B	0x89	0x67	0x45	0x23	0x80	0x0D

16	17	18	19	20	21	22
Measured water temperature in degree, for example 56.34 °C			ST1	ST2	Checksum	Stop Byte
0x34	0x56	0x00			CS =(Byte 0 + Byte 1 + + ST2) & 0xFF	0x16

ST1 & ST2 are used for error code, ST1 is defined as below and ST2 is reserved:

ST2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			UFC chip error		Flow direction wrong	Flow rate out of range		

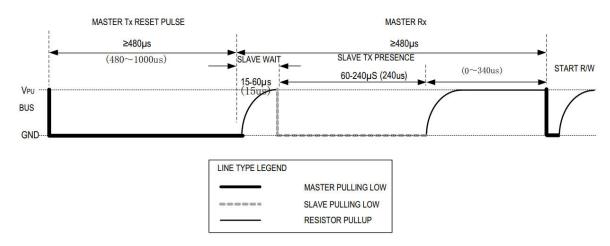
ST1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			Empty tube			-	-	

UFC chip error: Flow direction wrong: UFC not detected or abnormal. Negative flow detected.

Empty tube:	No water detected in the tube.
Flow rate out of range:	Big flow rate out of range continuously detected for 5s.

9 1-wire Protocol

9.1 **Protocol Description**


The read and write operation of 1-wire protocol is low bit first and high bit last. The 1-wire interface of MUS-1 receives the reading time sequence and sends out measurement data. If the data is not ready, all the data will be zero. MUS-1 is a slave, which transmits data at a rate of 16.3k bit/s.

The sequence parameters in the figures in this section are from the general standard, and the brackets are the parameters implemented by the slave. In addition to standard function mode (NM), MUS-1 has added a simplified mode (SM) to reduce data flow.

As 1-wire interface is simulated via MCU's GPIO, it is not fully compatible with the hardware interface and some parameters are limited, pls refer to the following description for details.

9.1.1 BUS Initialization (1WRST)

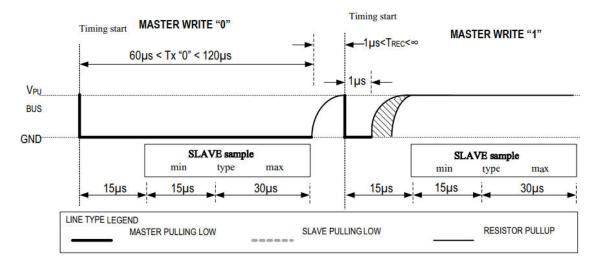
The slave will pull the BUS down 60-240 us within 15-60 us after receiving the effective jump. During this period, the host will sample the bus to determine whether the slave is connected to the current BUS.

9.1.2 Master Write Operation

It needs at least 60 us for the master to write one bit to the bus, and there is more than 1 us interval for continuous write operations.

The operation steps of the master when writing data are as follows:

1) The master pulls down the bus by 1 us.


2) The master releases the bus within 15 us (routine is 3 us), and then puts the data immediately.

3) The master waits (routine is 50 us) for the end of this receiving cycle of 60 us, and then releases the bus.

4) If the data is not sent completely, wait for 1 us, repeat the above steps, and prepare to send the next bit.

The operation steps of the slave when writing data are as follows:

- 1) When there are 1-15 us low pulses on the slave detection bus, it is ready to receive data.
- 2) The slave reads the bus data in a time window of 15-60 us (20 us is recommended).

9.1.3 Master Read operation

The master needs at least 60 us to read one bit from the bus, and the interval between two consecutive read operations is more than 1 us.

When reading data, the master operation steps are as follows:

1) The master pulls down the bus by 1-15 us (routine is 4 us) and then releases it.

2) The host reads the bus value within 15 us, with a routine of 11 us.

3) The master waits (routine 40 us) for the end of this receiving cycle of 60 us, and then releases the bus.

4) If the data is not received completely, wait for 1 us or more (routine is 1 us), repeat the previous steps, and prepare to receive the next bit.

When reading data, the slave operation steps are as follows:

1) The slave detects the bus, data is immediately inserted when there are 1-15 us low pulses or at the falling edge.

Note: If the low pulse of the host is as low as 1 us, the slave may not be able to detect the accurate pulse width. A compromise method can be considered: after the slave detects the falling edge, it detects the high level arrival time t through interrupts or scans greater than 1 us

and less than 10 us. If t is less than 10 us, the slave will input data; If t is greater than 10 us, continue to detect and determine whether it is a 1WRST signal.

2) Hold the data to 60 us and then release the bus.

3) If the data is not sent completely, repeat the above steps to prepare to send the next bit.

9.2 1-wire Command

The command format is: command [parameters] [checksum], and the content of [] can be omitted, and the checksum is the 8-bit cumulative value of the parameter.

Table 10: 1-wire Command format

Command	Function	
0x5a	Clear accumulated flow	
0x5b, REG,	Continuously read data from address register	
data1,data2	(REG), with REG and read range from 0x30	
	to 0x3b	
0x5d	Reset module	

Notes:

- 1. [para] is the data read, with low bytes leading and can be omitted. After omission, the function of the command is the same as 0xaa.
- 2. The NM mode can be switched directly by command. When switching between SM mode and NM mode, or between SM modes, initialization (1WRST) must be executed first.
- 3. When already in SM mode, there is no need to issue a command to read data. Instead, initiate a read operation and return the last requested type data from the slave.

9.3 1-wire registers

Address	Symbol
0x30	InFl_L
0x31	InFl_M
0x32	InFl_H
0x33	InFl_CRC8
0x34	T_L
0x35	T_M
0x36	T_H
0x37	T_CRC8
0x38	CuFl_L
0x39	CuFl_M
0x3a	CuFl_H
0x3b	CuFl_CRC8

Example 1: 0x30 to 0x32 are sequentially 0x40, 0x0d, and 0x03, indicating an instantaneous flow of $200000 \times 0.01=2000 l/h$.

Example 2: 0x34 to 0x36 are sequentially 0x70, 0x17, and 0x00, indicating a temperature of 6000 \times 0.01=60 $^\circ\!C$.

Example 3: 0x38 to 0x3a are sequentially 0xff, 0xff, and 0xff, indicating a cumulative flow of $16777215 \times 1677721.5 l$ (1677.7 m3).1-wire parameters

9.4 CRC-8 calculation

CRC-8 calculation of array 'val' with a length of 'length'

```
uint8_t crc8( uint8_t *val, uint8_t length )
{
    uint8_t CRC=0xFF;
    uint8_t i,t;
    for(i=0;i<length;i++)
    {
        CRC^=val[i];
        for(t=8;t>0;--t)
        {
            if(CRC&0x80) { CRC=(CRC<<1)^0x31u;}
        Else { CRC=(CRC<<1); }
        }
    }
    return CRC;
}</pre>
```

9.5 Example of 1-wire read/write

10 Ordering information

Table 11: Ordering information

Ordering Code	Material ID	Package	Description	Delivery Quantity
MUS-01	-	-	Miro Sciosense Flow module	pcs

Note:关于本目录上的商品,使用前请先阅读产品说明书。

Headquarters中国Höranx Elektromechanik GmbH霍恩茨 (上海) 测量技术有限公司Gottlieb-Daimler-Str. 107上海市闵行区沪闵路 1871 号 9 幢+49 7151 1716 66+86 021-3143 3803info@horanx.comInfo@horanx.com

因产品改良等原因,本资料可能变更,不另行通知,请谅解。

Edited in China 2023